Fluorhaltige Moleküle aus der Zellkultur

Natürliche organische Verbindungen, die Fluor enthalten, sind selten: Lebende Organismen stellen sie – bis auf Ausnahmen – nicht her. Amerikanische Wissenschaftler haben jetzt einen mikrobiellen Wirtsorganismus gentechnisch mit einem fluororganischen Stoffwechsel ausgestattet und dazu gebracht, ein fluoriertes Zwischenprodukt, ein Diketid, herzustellen. Wie sie in der Zeitschrift Angewandte Chemie berichten, ließ sich das Diketid als Monomer zur In-vivo-Herstellung fluorierter Biokunststoffe nutzen.

Anders als die Natur nutzen Chemiker Fluor gern und häufig. Spontan denkt man da an die Teflon-Beschichtung der Bratpfanne oder die wasserabweisende Gore-Tex-Jacke, die beide auf Polytetrafluorethylen (PTFE) basieren. Fluor ist aber auch in vielen Agrochemikalien und in ca. 20 bis 30 % unserer modernen Pharmaka enthalten, von Antimalariamitteln über Cytostatika bis zu Inhalationsanästhetika, Blutersatzstoffen und Beatmungsmitteln. Und auch Flüssigkristalle für Flachbildschirme, Ozon-freundliche Kühlmittel und Treibgase basieren auf fluororganischen Verbindungen.

Angesichts des Potenzials lebender Systeme zur Herstellung komplexer chemischer Verbindungen wollten die Forscher um Michelle C. Y. Chang von der University of California in Berkeley (USA) die zelluläre biosynthetische Maschinerie so manipulieren, dass sie auch einfache fluorierte Bausteine verwenden kann, um neue fluororganisch Zielmoleküle herzustellen.

Dazu schleusten sie Gene für drei besonders leistungsfähige Enzyme aus verschiedenen anderen Mikroorganismen in das Bakterium Escherichia coli ein, um einen Biosyntheseweg für Diketide einzuführen. Diese Enzyme akzeptieren auch fluorhaltige Derivate ihrer eigentlichen Substrate. Zusätzlich musste ein Gen für ein Transportprotein eingeschleust werden, das zugegebenes Fluormalonat als fluorhaltiges Ausgangsmaterial in die Zellen transportiert. Mittels der Enzyme stellten die Zellen daraus Fluormalonyl-Coenzym A und davon ausgehend 2-Fluor-3R-Hydroxybutyrat-Diketid in hoher Ausbeute her.

Die Forscher schleusten nun noch ein weiteres Gen ein für ein Enzym, mit dessen Hilfe viele Bakterien Polyhydroxy-Alkanoate (PHA) herstellen, Polyester, die ihnen als Speicher für Kohlenstoff und Energie dienen. Die bioabbaubaren PHAs werden zur Herstellung von Biokunststoffen verwendet, z.B. für Lebensmittelverpackungen und im medizinischen Bereich, etwa für Implantate. Die neuen gentechnisch veränderten Mikroorganismen bauten die fluorierten Diketide mit in die erzeugten PHAs ein und stellten so Polymere her, die 5 bis 15% fluorierte Bausteine enthielten. Die fluorierten Biokunststoffe zeigten sich weniger brüchig als fluorfreie PHAs. Durch einen gesteuerten Einbau fluorhaltiger Monomere könnten die Eigenschaften von Biokunststoffen gezielt variiert werden.

Die Forscher hoffen außerdem, über den Schlüsselbaustein Fluormalonyl-Coenzym A auch ein breites Spektrum fluorierter kleiner Zielmoleküle in lebenden Zellen herstellen zu können, etwa für Pharmaka.

Innovation Pitch

Die Start-up-Plattform für Chemie und Biowissenschaften
Entdecken Sie die Innovatoren von morgen

Die Start-up-Plattform für Chemie und Biowissenschaften

CHEManager Innovation Pitch unterstützt Innovationen in der Start-up-Szene der Chemie- und Biowissenschaften. Die Plattform ermöglicht es Gründern, Jungunternehmern und Start-ups, ihre Unternehmen der Branche vorzustellen.

CHEMonitor

Meinungsbarometer für die Chemieindustrie

Meinungsbarometer für die Chemieindustrie

Trendbarometer für die Chemie- und Pharmaindustrie. Präsentiert von CHEManager und Santiago Advisors Management-Beratung für Strategie und Organisation.

Meist gelesen

Photo
• 14.05.2025 • ThemenLogistik

Komplexität der Pharmalogistik steigt

Kann man an der Entwicklung der Pharmalogistik ablesen, welche wesentlichen Fortschritte die Pharmaforschung in den letzten Jahren gemacht und wie sich der Vertrieb pharmazeutischer Produkte verändert hat?