News

Twaron Spinning Process for Carbon Nanotube Fibers

13.01.2013 -

Researchers at Teijin Aramid, based in the Netherlands, and Rice University in the USA published their research findings on a new generation of super fibers in the leading scientific journal, Science. For the first time it has been possible to spin carbon nanotubes (CNTs) into a super fiber that has very high thermal and electrical conductivity and good textile performance. Carbon nanotubes, the building blocks of the fiber, which is as thin as a strand of DNA, combine the best properties of thermal and electrical conductivity, strength, modulus and flexibility.

Teijin Aramid expects to replace the copper in data cables and light power cables used in the aerospace and automotive industries, to make aircraft and high end cars lighter and more robust at the same time. Other applications could include integrating light weight electronic components, such as antennas, into composites, or replacing cooling systems in electronics where the high thermal conductivity of carbon nanotube fiber can help to dissipate heat.

Teijin Aramid is currently trialing samples of CNT fiber on a small scale with the most active prospective customers. Building up a robust supply chain is high on the project team's list of priorities.

Teijin Aramid is running this project in collaboration with research groups led by Professor Matteo Pasquali and Professor Jun Kono at Rice University (Houston, USA) and allied research centers at Technion-Israel Institute of Technology (Haifa, Israel) and the US Air Force Research Laboratory (Dayton, USA). The research was funded by Teijin Aramid and its parent company, Teijin