Research & Innovation

Experts Statements: Kurt J. Kiewel, Cambrex

The Winning Formula: Chemists Who Can Collaborate Will Thrive in Pharmaceutical Research, Experts Predict

12.12.2016 -

Despite tremendous challenges facing the pharmaceutical industry, it continues with its commitment to innovation and the discovery of novel drugs to address unmet medical needs. Indeed, medicinal chemists face a challenge of their own. Trying to survive in a changing environment where pharma is focusing on biologics drug candidates will require chemists to adapt.

CHEManager International asked R&D experts of chemical and pharmaceutical companies to elaborate on their research strategy and share their opinion with our readers. In detail, we interviewed professionals ranging from CEOs to heads of R&D and process development about:

The crucial success factors in chemical and pharmaceutical research.

Kurt J. Kiewel: ŒThe important skills for individuals within a successful research program are possession of a broad knowledge of chemistry, creativity in problem solving and a willingness to get peer advice. These factors, along with experience in hands-on research, allow chemists to develop and progress.

Not every problem has a straightforward solution, and not every reaction is described in the literature. Having the confidence to try something reasonable in the lab, even if it ultimately does not work, may provide clues on how to succeed. Chemists are not always trying to solve new problems, just similar problems in a different context; so being current on the literature and sharing thoughts with colleagues will help to learn about other people’s experiences.

Confidence to try something
reasonable in the lab, even if it …
does not work, may provide clues
on how to succeed.

Kurt J. Kiewel,
Director R&D,
Cambrex

The role of information technology tools in developing reaction routes and processes.

Kurt J. Kiewel: Predictive software can provide a complementary tool to literature review and collaborative brainstorming for identifying possible reaction routes. Selecting a route for manufacturing via software may not analyze a number of key points critical to successful and economical process development:

Firstly, software tends to focus on bond making/breaking, and may not capture the costs or difficulties associated with workup, purification, isolation or waste. Additionally, one has to assess the scalability of software proposed routes in the context of the project, and also the available manufacturing facility in which the chemistry will be undertaken, which is often a significant driver for route selection. It is also important that safety evaluation is undertaken when predicting and developing a route, so the use of any modeling software within a wider cross-functional team, where ideas and literature research can be discussed and brainstormed in an open environment, is ideal to successfully transition and optimize a project from development through to manufacturing.

Challenges and changes affecting the work of R&D chemists in the future.

Kurt J. Kiewel: Batch and semi-batch processing is still used in chemical manufacturing, which makes classical process development skills, tools and knowledge as important as ever to master. Emerging technologies are being more widely implemented, but it is important to know when and how these new strategies should be integrated into a manufacturing plan to ensure they are utilized efficiently.

Beyond process development for manufacturing, the requirements of laboratory investigations to support regulatory filings are becoming increasingly rigorous. At the same time, newer quality, impurity, safety and environmental policies result in a more restrictive space in which to operate.

A greater number of cross-discipline science degree programs are available in academia, which may be taking time away from developing broader chemistry fundamentals, and there are limited opportunities for chemical process development training ahead of entering the job market. The number of mergers, acquisitions and the closing of research departments promote a perception of uncertainty in the job market, which may be turning potential scientists toward other career pursuits. In the long term, a negative impact on the available trained workforce for the chemical industry may result.